AIR LIFT I. DETERMINATION OF IN THE AIR LIFT TANK MOVING SOLID PARTICLE PARAMETERS

László Kovács – Sándor Váradi Professor emeritus– Associate Professor Budapest University of Technology and Economics HU

Abstract

One of the most important vertical pneumatic conveying equipment is the air lift. The paper deals with the mathematical-physical model for describing the important physical parameters of the air lift. By applying the continuity and the momentum equations written on the control volume we have got differential equations. The equations has been solved using Runge – Kutta method. Diagrams pressure, solid and air velocity, and concentration – obtained as a result of solutions gives a presentation on the basis of a given example.

Nomenclature		R [J/kg Re [-]
$A_o [m^2]$	particle cross section	$R_{ ho}$ [m]
<i>a_n</i> [m/Pa]	constant	
<i>b</i> [m]	height of beginning of the	R_t [m]
	pipe over distribution	<i>v</i> [m/s]
	layer	<i>v_{g1}</i> [m/s
<i>b_n</i> [m/Pa]	constant	
C _D [-]	drag coefficient	
<i>d</i> [m]	diameter	<i>v_j</i> [m/s]
<i>d</i> _o [m]	diameter of solid particle	<i>v_k</i> [m/s
<i>F</i> [N]	drag force	
$F_f[N]$	friction force	<i>v_m</i> [m/s
f [-]	friction factor	
G ₁ [N]	weight of a particle	$v_{mo}=\varphi$
<i>g</i> [m/s ²]	acceleration of gravity	
<i>H</i> [m]	height of the fluidized	Greek
	column in the air lift tank	α [deg
<i>k</i> ₀ [m/s]	constant characteristic of	o m
	the distribution layer	$\beta = -$
<i>m</i> ₁ [kg]	mass of one particle	m
^m g [ka/s]	mass flow of the gas	v_m
- [N9/5]	flowing towards the	$\varphi = - $
	nozzle over the	
	distribution layer	μ [kg/n
^𝑘 ց₁ [kg/s]	mass flow of the	
	conveying gas coming	K [-]
	through the distribution	$ ho_b$ [Kg/Ι
	layer	F I <i>I</i>
<i>m_{gk}</i> [ka/s]	mass flow of the	$\rho_g [Kg/I$
[····		

ut
rle
١g
9
h

$ ho_m$ [kg/m ³] $ ho_s$ [kg/m ³]	atmospheric pressure material concentration solid density
indices	
f	friction
g	gas
m	material
<i>j, k, p, t,</i> 1 1	mark of place one particle

Introduction

Air lift is used widely for the vertical conveying of various granular and powdery materials. This conveying equipment is suitable for transporting high (10–200 t/h) mass flows to high (max. 70-80 m) vertical distances.

The conveying equipment enables the continuous, automatic, dust-free (environmental-friend) transportation. The operation of the equipment is reliable, it adapts automatically to variations in delivery capacity and enables virtually erosion-free transport. It is widely used for the transport of cement, alumina, fly ash, limestone powder, etc.

1. Two-phase flow in air lifts

The operating air enters in the air lift at the place marked 1 according to the sketch shown in Figure 1 and flows to the nozzle marked 2. High velocity air stream exiting from the nozzle entrains the powdery material brought into fluidized state by the air flow passing through the air distribution layer marked 4 and flowing towards the nozzle.

The primary air jet and the finegrained solid material mixed in it, and flows upwards with a reduced velocity in the initial section (starting section) of the vertical conveying pipe marked 5.

Two partial processes, determining fundamentally the operation of the air lift. These are:

2.1. Radial flow of solid material-air mixture towards the nozzle above the air distribution layer

2.2. Mixing of air-solid material stream with air leaving the nozzle in the

starting section (in the initial section of the vertical conveying pipe)

(This section is discussed in the paper [3])

2.1.1. Radial flow of air towards the nozzle above the air distribution layer

Pressure p_1 under the air distribution layer can be considered to be constant. The pressure level at place R_t above the air distribution layer decreases from value p_t determined by the material column of height H to value p_k assumed at place R_p (Figure 2) due to the dynamic pressure of air flowing out of the nozzle. The value of overpressure p_t depends on the layer height of the fluidized column in the tank.

This allows the following equation to be set up:

Fig. 2 Control volume in the radial flow on distribution layer

$$p_t - \rho_m g H \tag{1}$$

The air flowing out of the nozzle is considered to be frictionless, and the change in state adiabatic. The velocity of the gas leaving the nozzle is:

$$v_{k} = \left[2 \frac{\kappa}{\kappa - 1} R T_{j} \left(1 - \left(\frac{p_{k}}{p_{j}} \right)^{\frac{\kappa - 1}{\kappa}} \right) + v_{j}^{2} \right]^{1/2}$$
(2)

Using velocity $_{k}v_{k}$ " taken from equation 2 and the known velocity $_{k}v_{j}$ " gives the following equation for pressure ratio $_{k}p_{k}/p_{j}$ ":

$$\frac{p_k}{p_j} = \left[1 - \frac{\kappa - 1}{\kappa} \frac{v_k^2 - v_j^2}{2RT_j}\right]^{\frac{1}{\kappa - 1}}$$
(3)

Thus, pressure $_{,}p_{k}$ " can be determined of the value of $_{,}p_{j}$ ".

Assuming the variation in pressure levels to be parabolic, pressure distribution

over the distribution layer can be described by the following equation:

$$p = \frac{1}{2a_n} \left(-b_n + \sqrt{b_n^2 + 4a_n R} \right)$$
(4)

The constants of this equation can be calculated from pressure values $_{,,p_{t}}^{,n}$ and $_{,,p_{k}}^{,n}$. These can be described as:

$$a_{n} = \frac{1}{p_{k} p_{t}} \frac{R_{p} p_{k} - R_{t} p_{t}}{p_{t} - p_{k}}$$
(5)

$$b_n = \frac{R_t - a_n p_k^2}{p_k} \tag{6}$$

Portion $dm_{g2} = \beta dm_{g1}$ of mass air flow " dm_{g1} " entering through an annulus surface element of the air distribution layer performs the fluidization of the column of "H" height in the tank and exits from the tank, while the balance marked " dm_g " entrains the particles as it flows towards the nozzle (the lower pressure place).

The mass flow of air flowing towards the nozzle is:

 $dm_g - (1-\beta)dm_{g1} -$

$$= (1 - \beta) \frac{p_1 - p}{k_o \rho_{g1}} \rho_{g1} R dR 2\pi =$$

$$= (1 - \beta) \frac{2\pi}{k_o} \left[p_1 + \frac{b_n}{2a_n} - \frac{1}{2a_n} (b_n^2 + 4a_n R)^{1/2} \right] R dR$$
(7)

The integration of this equation gives the following expression for the mass flow of air flowing towards the nozzle:

$$m_{g} = (1-\beta) \frac{2\pi}{k_{o}} \left\{ \left(p_{t} + \frac{b_{n}}{2a_{n}} \right) \frac{R_{t} - R}{2} - \frac{2}{480a_{n}^{3}} \left[(12a_{n}R_{t} - 2b_{n}^{2})(4a_{n}R_{t} + b_{n}^{2})^{3/2} - (12a_{n}R_{t} - 2b_{n}^{2})(4a_{n}R_{t} + b_{n}^{2})^{3/2} \right] \right\}$$
(8)

The calculation of the parameters of the solid material-air mixture flowing towards the nozzle will require the value of derivative $_{,dv_{g}/dR^{,*}}$ of the air velocity. Let

us set up the equation of continuity for this gas for the control volume marked in Figure 2 with the following assumptions taken into consideration:

- The tightening effect caused by the particles in the control volume will not be taken into account
- The change in the state of the gas is considered to be isometric.

$$R\,d\alpha\,dR\,\rho_{g1}\frac{p_1-p}{k_o\,\rho_{g1}}+$$

$$+\left(R+\frac{dR}{2}\right)\left(\rho_{g}+\frac{d\rho_{g}}{2}\right)\left(v_{g}+\frac{dv_{g}}{2}\right)d\alpha b - \left(R-\frac{dR}{2}\right)\left(\rho_{g}-\frac{d\rho_{g}}{2}\right)\left(v_{g}-\frac{dv_{g}}{2}\right)d\alpha b - \frac{dv_{g}}{2}d\alpha b - \frac{dv_{g}}{2}d$$

$$-\beta R \, d\alpha \, dR \, \rho_{g1} \frac{p_1 - p}{k_o \rho_{g1}} = 0 \quad (9)$$

After transformation and rearranging, as well as neglecting second-order members, the continuity equation can be written in the following form:

$$\frac{dv_g}{dR} = -(1-\beta)\frac{(p_1-p)p_o}{b_{k_o}\rho_{s_o}p} - \frac{v_g}{R} - \frac{v_g}{p}\frac{dp}{dR}$$
(10)

(The gas mass flow calculated from the value obtained after the integration of equation 10 is identical with the value calculated with relationship 8.)

Figure 3 shows the radial distribution of gas mass flow $m_g(R)$ calculated with relationship 8, using the data of an example described later.

Fig 3 Gas mass flow distribution

2.1.2. Solid material flow towards the nozzle. Continuity equation written for particles

Using the symbols of Figure 2, the continuity equation for the particles in the control volume can be written in the following form:

$$R \, d\alpha \, dR \, \rho_b \varphi \, v_m + \\ + \left(R + \frac{dR}{2}\right) d\alpha \, b \left(\rho_m + \frac{d\rho_m}{2}\right) \left(v_m + \frac{dv_m}{2}\right) - \\ - \left(R - \frac{dR}{2}\right) d\alpha \, b \left(\rho_m - \frac{d\rho_m}{2}\right) \left(v_m - \frac{dv_m}{2}\right) - 0$$
(11)

After transformation and rearranging, as well as neglecting second-order members, we obtain the following equation:

$$\frac{d\rho_m}{dR} = -\frac{\rho_b \varphi v_m}{b v_m} - \frac{\rho_m}{R} - \frac{\rho_m}{v_m} \frac{dv_m}{dR} \qquad (12)$$

2.1.3. Momentum equation written for particles

The momentum equation can be written in the following form:

$$\left(\left(R + \frac{dR}{2} \right) \left(\rho_m + \frac{d\rho_m}{2} \right) \left(v_m + \frac{dv_m}{2} \right)^2 - \frac{dv_m}{2} \right)^2 - \frac{dv_m}{2} + \frac{dv$$

$$-\left(R-\frac{dR}{2}\right)\left(\rho_{m}-\frac{d\rho_{m}}{2}\right)\left(v_{m}-\frac{dv_{m}}{2}\right)^{2}\left[b\,d\alpha=\frac{d\sigma_{m}}{2}\right]$$

$$= -dF + dF_f \tag{13}$$

 $_{,,d}F$ on the right side of equation 13 means the drag force on the particles, while $_{,d}F_{f}$ means the friction force.

These can be written in the following form:

$$dF = \frac{\rho_m}{m_1} b R d\alpha dR \frac{\rho_g}{2} A_o C_D (|v_g| - |v_m|)^2$$
(14)

According to Kaskas [1], drag coefficient $_{n}C_{D}$ " can be written in the following form:

$$C_D = \frac{24}{\mathrm{Re}} + \frac{4}{\sqrt{\mathrm{Re}}} + 0.4$$

$$\operatorname{Re} = \frac{(v_g - v_m)d_s \rho_g}{\mu_g}$$
(15)

The Coulomb friction force is:

$$dF_f = f \rho_m g R d\alpha b dR$$
 (16)

After transformation and rearranging, as well as neglecting second-order members and taking equation 12 into consideration, we obtain the following relationship:

$$\frac{dv_m}{dR} = \frac{\rho_b \varphi v_m}{b \rho_m} - \frac{\rho_{go} p A_o C_D}{2m_1 v_m p_o} \left(\left| v_g \right| - \left| v_m \right| \right)^2 + \frac{f g}{v_m}$$
(17)

The parameters of solid material-air mixture flowing towards the nozzle can be calculated with the use of equations 4, 10, 12, 17 and 19.

The calculations have shown that a dead zone is developed on the fluidization layer. This means that material flow towards the flow in the layer of "b" height does not start from the inside wall of the tank marked "Rt", but only from the radius $R_i < R_t$. Therefore the value of radius "Ri" has to be high enough to satisfy condition $F \ge F_f$ for drag force "F" calculated with the radial air velocity determinable from gas mass flow "mg" passing through surface section $\Delta A = \pi (R_t^2 - R_i^2)$ of the distribution layer.

Fig. 4 Figure for determining "R_i" value

Thus, in order to start numerical calculations, the value of $_{,,}R_{i}^{,n}$ has to be determined as the first step (see Figure 4).

Using equation 8, mass flow $_{,m_g}$ " is calculated at various $_{,R}$ " values.

The velocity of gas flowing towards the nozzle, at various values of $_{R}$ " and with equation 4 taken into consideration, is obtained as:

$$v_{g} = \frac{m_{g}}{2R\pi b \rho_{g}} = \frac{m_{g} p_{o}}{2R\pi b \rho_{go} p} =$$
$$= \frac{m_{g} p_{o} 2 a_{n}}{2R\pi b \rho_{go} (-b_{n} + \sqrt{b_{n}^{2} + 4 a_{n} R})}$$
(18)

Drag force "F" is calculated by equation 14 with gas velocity " v_g " at particle velocity v_m =0. Repeating this at several assumed radii allows curve F(R) to be plotted. The Coulomb friction force " F_f " can be calculated by equation 16. The point of intersection of the two curves gives the " R_i " value (see Figure 4).

2.1.4. Diagrams obtained by solving the equations

Equations 4, 10, 12 and 17 have been solved using the numerical method of Runge-Kutta. The data of the example used are:

b=0.2 m; *H*=5 m; k_o =50000 m/s; m_m =30 kg/s; m_g =0.435 kg/s; p_1 =145.3 kPa; p_t =139.23 kPa; p_k =133.23 kPa; R_t =1 m; R_p =0.125 m; v_k =100 m/s; β =0.15; ρ_b =800 kg/m³; ρ_s =2600 kg/m³; d_o ≈1.5*10⁻⁴ m; solid material: fly ash; R_t =0.8074 m.

In Figure 5 the velocity distribution of air flowing through the distribution layer (layer 2 in Figure 1) and the mass flow variation flowing towards the nozzle are plotted as a function of radius.

Fig 6 Gas-, solid material velocity and pressure distribution

Figure 6 shows the distributions of velocities in the gas flowing towards the nozzle, particle velocities and pressures over the distribution layer within the layer of "b" height (see Figure 2).

Fig. 7 Gas mass flow and material concentration distribution

Figure 7 shows the variations in material concentration $_{m}\rho_{m}$ " and radial gas mass flow $_{m}m_{g}$ ".

Conclusions and remarks

The model presented in this paper is suitable for taking the first step for the description of the complex flow taking place in air lifts. The equations derived, allows the main parameters to be calculated and the main dimensions of the equipment to be determined.

The following experiments need to be made in order to improve and verify the model used for the description of the twophase flow taking place in air lift tanks.

• Determine relative number marked " ϕ " for velocity $v_{mo} = \phi v_m$ of material arriving from above into the control volume assumed in Section 2.1.

www.greenid.ir

• The portion marked $_{,,\beta}\beta$ of the air volume passing through the distribution layer provides the fluidization of the material column of $_{,,H}\beta$ height. The value of $_{,,\beta}\beta$ has to be determined by experiments.

• The pressure variation over the distribution layer was assumed to be parabolic in this paper. The value of this assumption has to be verified by experiments.

• The radius marked $_{i}R_{i}$ of the dead zone discussed in Sub-section 2.1.2 has to be verified by experiments.

References

- 1. BRAUER, H. Grundlagen der Ein- und Mehrphasenströmungen. Verlag Sauerländer, Aarau and Frankfurt/Main, 1971
- 2. L. KOVÁCS and S. VÁRADI. Pneumatic Conveying in the Vertical Pipeline of Air Lift; Periodica Polytechnica Ser. Mech. Eng. Vol. 42 (1998) No. 2.
- L. KOVÁCS and S. VÁRADI. Two phase flow in the mixing area of the air lift. BULK ASIA 2005

Bio data kovacs@hds.bme.hu

Dr. L. KOVÁCS is a professor emeritus at the Budapest University of Technology and Economics, Department of Hydrodynamic Systems. He works more than 40 years in the field of pneumatic transport. He received in 1992 the degree of doctor from the Hungarian Akademy of Sciences in rekognition of his work in the theoretical development of pneumatic transport. He published more than 80 papers in the field of pneumatic transport.

Bio data varadi@hds.bme.hu

Dr. S. VÁRADI is an associate professor in the Budapest University of Technology and Economics, Department of Hydrodydamic Systems. His special field is to study and theoretical development of pneumatic transport. He is at present working as a private consultant in connection with the pneumatic transport in the EWB hungarian engineering concern, which is member of MCNALLY BHARAT ENGG/CALCUTTA also. He directed and controlled the putting into operation work of fly ash handling systems of power plants in Germany (Jänschwalde 1982), in Turkey (Kangal 1989-90 and 1999-2000), in Indonesia (Suralaya 1996-97 and 2002).